emc2.simulator (emc2.simulator)

This module contains all of the calculations used by the radar/lidar simulator in EMC^2.

attenuation.calc_radar_atm_attenuation(...)

This function calculates atmospheric attenuation due to water vapor and O2 for a given model column.

attenuation.calc_theory_beta_m(model, Lambda)

This calculates the molecular scattering parameters for a given model.

attenuation.calc_radar_Ze_min(instrument, model)

This function calculates the minimum detectable radar signal (Ze_min) profile given radar detectability at a reference range.

classification.lidar_classify_phase(...[, ...])

Phase classification based on fixed thresholds of a lidar's LDR and tot beta_p variables.

classification.radar_classify_phase(...[, ...])

Phase classification based on cloud occurrence and Ze_min threshold (equivalent

classification.lidar_emulate_cosp_phase(...)

Phase classification method to emulate COSP based on attenuated total backscatter

classification.calculate_phase_ratio(model, ...)

Calculate time-height phase ratio field of subcolumn hydrometeor mask for a given class(es).

psd.calc_mu_lambda(model[, hyd_type, ...])

This method calculated the Gamma PSD parameters following Morrison and Gettelman (2008).

psd.calc_velocity_nssl(dmax, rhoe, hyd_type)

Calculate the terminal velocity according to the NSSL 2-moment scheme.

radar_moments.calc_total_reflectivity(model)

This method calculates the total (convective + stratiform) reflectivity (Ze).

radar_moments.accumulate_attenuation(model, ...)

Accumulates atmospheric and condensate radar attenuation (linear units) from TOA or the surface.

radar_moments.calc_radar_empirical(...[, ...])

Calculates the radar stratiform or convective reflectivity and attenuation in a sub-columns using empirical formulation from literature.

radar_moments.calc_radar_bulk(instrument, ...)

Calculates the radar stratiform or convective reflectivity and attenuation in a sub-columns using bulk scattering LUTs assuming geometric scatterers (radiation scheme logic).

radar_moments.calc_radar_micro(instrument, ...)

Calculates the first 3 radar moments (reflectivity, mean Doppler velocity and spectral width) in a given column for the given radar using the microphysics (MG2) logic.

radar_moments.calc_radar_moments(instrument, ...)

Calculates the reflectivity, doppler velocity, and spectral width in a given column for the given radar.

lidar_moments.calc_total_alpha_beta(model[, ...])

Calculates total (strat+conv) lidar variables.

lidar_moments.calc_LDR_and_ext(model[, ...])

Calculates the lidar extinction mask (for conv+strat) and linear depolarization ratio (per strat, conv, and strat+conv) for the given model and lidar.

lidar_moments.accumulate_OD(model, is_conv, ...)

Accumulates optical thickness from TOA or the surface.

lidar_moments.calc_lidar_empirical(...[, ...])

Calculates the lidar stratiform or convective backscatter, extinction, and optical depth in a sub-columns using empirical formulation from literature.

lidar_moments.calc_lidar_bulk(instrument, ...)

Calculates the lidar stratiform or convective backscatter, extinction, and optical depth in a sub-columns using bulk scattering LUTs assuming geometric scatterers (radiation scheme logic).

lidar_moments.calc_lidar_micro(instrument, ...)

Calculates the lidar backscatter, extinction, and optical depth in a given column for the given lidar using the microphysics (MG2) logic.

lidar_moments.calc_lidar_moments(instrument, ...)

Calculates the lidar backscatter, extinction, and optical depth in a given column for the given lidar.

main.make_simulated_data(model, instrument, ...)

This procedure will make all of the subcolumns and simulated data for each model column.

subcolumn.set_convective_sub_col_frac(model, ...)

Sets the hydrometeor fraction due to convection in each subcolumn.

subcolumn.set_stratiform_sub_col_frac(model)

Sets the hydrometeor fraction due to stratiform cloud particles in each subcolumn.

subcolumn.set_precip_sub_col_frac(model, is_conv)

Sets the hydrometeor fraction due to precipitation in each subcolumn.

subcolumn.set_q_n(model, hyd_type[, ...])

This function distributes the mixing ratio and number concentration into the subcolumns.