emc2.core.model.WRF

class emc2.core.model.WRF(file_path, z_range=None, time_range=None, mcphys_scheme='nssl', NUWRF=False, bounding_box=None)[source]

This load a WRF simulation and all of the necessary parameters from the simulation.

Parameters:
file_path: str

Path to WRF simulation.

time_range: tuple or None

Start and end time to include. If this is None, the entire simulation will be included.

z_range: numpy array or None

The z levels of the vertical grid you want to use. By default, the levels are 0 m to 15000 m, increasing by 500 m.

mcphys_scheme: str

3ice: Goddard 3ICE scheme morrison: Morrison microphysics

NUWRF: bool

If true, model is NASA Unified WRF.

bounding_box: None or 4-tuple

If not none, then a tuple representing the bounding box (lat_min, lon_min, lat_max, lon_max).

__init__(file_path, z_range=None, time_range=None, mcphys_scheme='nssl', NUWRF=False, bounding_box=None)[source]

This load a WRF simulation and all of the necessary parameters from the simulation.

Parameters:
file_path: str

Path to WRF simulation.

time_range: tuple or None

Start and end time to include. If this is None, the entire simulation will be included.

z_range: numpy array or None

The z levels of the vertical grid you want to use. By default, the levels are 0 m to 15000 m, increasing by 500 m.

mcphys_scheme: str

3ice: Goddard 3ICE scheme morrison: Morrison microphysics

NUWRF: bool

If true, model is NASA Unified WRF.

bounding_box: None or 4-tuple

If not none, then a tuple representing the bounding box (lat_min, lon_min, lat_max, lon_max).

Methods

__init__(file_path[, z_range, time_range, ...])

This load a WRF simulation and all of the necessary parameters from the simulation.

check_and_stack_time_lat_lon([...])

Stack the time dim together with the lat and lon dims (if the lat and/or lon dims are longer than 1) to enable EMC^2 processing of regional model output.

finalize_subcol_fields([more_fieldnames])

Remove all zero values from subcolumn output fields enabling better visualization.

load_subcolumns_from_netcdf(file_name)

Load all of the subcolumn data from a previously saved netCDF file.

permute_dims_for_processing([base_order, ...])

Reorder dims for consistent processing such that the order is: subcolumn x time x height.

remove_appended_str([all_appended_in_lat])

Remove appended strings from xr.Dataset coords and fieldnames based on lat/lon coord names (typically required when using post-processed output data files).

remove_subcol_fields([cloud_class])

Remove all subcolumn output fields for the given cloud class to save memory (mainly releveant for CESM and E3SM).

set_hyd_types(hyd_types)

subcolumns_to_netcdf(file_name)

Saves all of the simulated subcolumn parameters to a netCDF file.

unstack_time_lat_lon([order_dim, ...])

Unstack the time, lat, and lon dims if they were previously stacked together (self.stacked_time_dim is not None).

Attributes

hydrometeor_classes

The list of hydrometeor classes.

num_hydrometeor_classes

The number of hydrometeor classes used

num_subcolumns

Gets the number of subcolumns in the model.