Source code for emc2.simulator.lidar_moments

import xarray as xr
import numpy as np
import dask.bag as db
from time import time
from scipy.interpolate import LinearNDInterpolator

from .attenuation import calc_theory_beta_m
from .psd import calc_mu_lambda
from ..core.instrument import ureg, quantity


[docs] def calc_total_alpha_beta(model, OD_from_sfc=True, eta=1): """ Calculates total (strat+conv) lidar variables. Parameters ---------- model: Model The model to generate the parameters for. ext_OD: float The optical depth threshold for determining if the signal is extinct. OD_from_sfc: bool If True, optical depth will be calculated from the surface. If False, optical depth will be calculated from the top of the atmosphere. LDR_per_hyd: dict or None If a dict, the amount of LDR per hydrometeor class must be specified in a dictionary whose keywords are the model's hydrometeor classes. If None, the default settings from the model will be used. eta: float Multiple scattering coefficient. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ if OD_from_sfc: OD_str = "layer base" else: OD_str = "layer top" if model.process_conv: model.ds["sub_col_beta_p_tot"] = model.ds["sub_col_beta_p_tot_conv"].fillna(0) + \ model.ds["sub_col_beta_p_tot_strat"].fillna(0) model.ds["sub_col_alpha_p_tot"] = model.ds["sub_col_alpha_p_tot_conv"].fillna(0) + \ model.ds["sub_col_alpha_p_tot_strat"].fillna(0) model.ds["sub_col_OD_tot"] = model.ds["sub_col_OD_tot_conv"].fillna(0) + \ model.ds["sub_col_OD_tot_strat"].fillna(0) else: model.ds["sub_col_beta_p_tot"] = model.ds["sub_col_beta_p_tot_strat"].fillna(0) model.ds["sub_col_alpha_p_tot"] = model.ds["sub_col_alpha_p_tot_strat"].fillna(0) model.ds["sub_col_OD_tot"] = model.ds["sub_col_OD_tot_strat"].fillna(0) model.ds["sub_col_beta_p_tot"].attrs["long_name"] = \ "Total backscatter coefficient (convective + stratiform)" model.ds["sub_col_beta_p_tot"].attrs["units"] = r"$m^{-1} sr^{-1}$" model.ds["sub_col_alpha_p_tot"].attrs["long_name"] = \ "Total extinction coefficient (convective + stratiform)" model.ds["sub_col_alpha_p_tot"].attrs["units"] = r"$m^{-1}$" model.ds["sub_col_OD_tot"].attrs["long_name"] = \ "Total cumulative optical depth at %s (convective + stratiform)" % OD_str model.ds["sub_col_OD_tot"].attrs["units"] = "1" beta_m = np.tile(model.ds['sigma_180_vol'].values, (model.num_subcolumns, 1, 1)) T = np.tile(model.ds['tau'].values, (model.num_subcolumns, 1, 1)) model.ds['sub_col_beta_att_tot'] = (beta_m + model.ds['sub_col_beta_p_tot']) * \ T * np.exp(-2 * eta * model.ds['sub_col_OD_tot']) model.ds["sub_col_beta_att_tot"].attrs["long_name"] = \ "Total attenuated backscatter coefficient (convective + stratiform)" model.ds["sub_col_beta_att_tot"].attrs["units"] = r"$m^{-1} sr^{-1}$" return model
[docs] def calc_LDR_and_ext(model, ext_OD=4., OD_from_sfc=True, LDR_per_hyd=None, hyd_types=None): """ Calculates the lidar extinction mask (for conv+strat) and linear depolarization ratio (per strat, conv, and strat+conv) for the given model and lidar. Run after calculating 'sub_col_OD_tot'. Parameters ---------- model: Model The model to generate the parameters for. ext_OD: float The optical depth threshold for determining if the signal is extinct. OD_from_sfc: bool If True, optical depth will be calculated from the surface. If False, optical depth will be calculated from the top of the atmosphere. LDR_per_hyd: dict or None If a dict, the amount of LDR per hydrometeor class must be specified in a dictionary whose keywords are the model's hydrometeor classes. If None, the default settings from the model will be used. hyd_types: list or None list of hydrometeor names to include in calcuation. using default Model subclass types if None. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ hyd_types = model.set_hyd_types(hyd_types) if model.process_conv: cld_classes = ["conv", "strat"] else: cld_classes = ["strat"] if LDR_per_hyd is None: LDR_per_hyd = model.LDR_per_hyd if OD_from_sfc: OD_str = ("layer base", "from surface") else: OD_str = ("layer top", "from TOA") numerator_tot = xr.zeros_like(model.ds["sub_col_beta_p_%s_strat" % model.hydrometeor_classes[0]]) denominator_tot = xr.zeros_like(model.ds["sub_col_beta_p_%s_strat" % model.hydrometeor_classes[0]]) for cloud_str in cld_classes: numerator = 0. denominator = 0. for hyd_type in hyd_types: beta_p_key = "sub_col_beta_p_%s_%s" % (hyd_type, cloud_str) numerator += model.ds[beta_p_key].fillna(0) * model.LDR_per_hyd[hyd_type].magnitude denominator += model.ds[beta_p_key].fillna(0) denominator_no_zeros = np.where(denominator > 0, denominator, np.nan) model.ds["sub_col_LDR_%s" % cloud_str] = numerator / denominator_no_zeros model.ds["sub_col_LDR_%s" % cloud_str].attrs["long_name"] = \ "Linear depolarization ratio in %s" % cloud_str model.ds["sub_col_LDR_%s" % cloud_str].attrs["units"] = "1" numerator_tot += numerator denominator_tot += denominator denominator_tot = np.where(denominator_tot > 0, denominator_tot, np.nan) model.ds["sub_col_LDR_tot"] = numerator_tot / denominator_tot model.ds["sub_col_LDR_tot"].attrs["long_name"] = "Linear depolarization ratio (convective + stratiform)" model.ds["sub_col_LDR_tot"].attrs["units"] = "1" OD_cum_p_tot = \ np.where(model.ds["sub_col_OD_tot"].values > ext_OD, 2, 0.) if OD_from_sfc: my_diff = np.diff(OD_cum_p_tot, axis=2, append=0) else: my_diff = np.flip(np.diff(np.flip(OD_cum_p_tot, axis=2), axis=2, append=0), axis=2) ext_tmp = np.where(my_diff > 0., 1, 0) ext_mask = OD_cum_p_tot + ext_tmp model.ds["ext_mask"] = xr.DataArray(ext_mask, dims=model.ds["sub_col_LDR_strat"].dims) model.ds["ext_mask"].attrs["long_name"] = "Extinction mask at %s based on optical thickness considerations \ (convective + stratiform; calculated %s)" % OD_str model.ds["ext_mask"].attrs["units"] = ("2 = Signal extinct, 1 = layer where signal becomes " + "extinct, 0 = signal not extinct") return model
[docs] def accumulate_OD(model, is_conv, z_values, hyd_type, OD_from_sfc=True, **kwargs): """ Accumulates optical thickness from TOA or the surface. Parameters ---------- model: Model The model to generate the parameters for. is_conv: bool True if the cell is convective z_values: ndarray model output height array in m. hyd_type: string hydrometeor class name to include in calcuation. OD_from_sfc: bool If True, then calculate optical depth from the surface. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ if is_conv: cloud_str = "conv" else: cloud_str = "strat" Dims = model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)].shape if OD_from_sfc: dz = np.tile(np.diff(z_values, axis=1, prepend=0.), (model.num_subcolumns, 1, 1)) model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray(np.cumsum( dz * np.concatenate((np.zeros(Dims[:2] + (1,)), model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)][:, :, :-1]), axis=2), axis=2), dims=model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)].dims) else: dz = np.tile(np.diff(z_values, axis=1, append=0.), (model.num_subcolumns, 1, 1)) model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray(np.flip(np.cumsum( np.flip(dz * np.concatenate((model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)][:, :, 1:], np.zeros(Dims[:2] + (1,))), axis=2), axis=2), axis=2), axis=2), dims=model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)].dims) return model
[docs] def calc_lidar_empirical(instrument, model, is_conv, p_values, t_values, z_values, OD_from_sfc=True, hyd_types=None, **kwargs): """ Calculates the lidar stratiform or convective backscatter, extinction, and optical depth in a sub-columns using empirical formulation from literature. Parameters ---------- instrument: Instrument The instrument to simulate. The instrument must be a lidar. model: Model The model to generate the parameters for. is_conv: bool True if the cell is convective p_values: ndarray model output pressure array in Pa. t_values: ndarray model output temperature array in C. z_values: ndarray model output height array in m. OD_from_sfc: bool If True, then calculate optical depth from the surface. hyd_types: list or None list of hydrometeor names to include in calcuation. using default Model subclass types if None. Additonal keyword arguments are passed into :py:func:`emc2.simulator.lidar_moments.accumulate_OD`. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ hyd_types = model.set_hyd_types(hyd_types) if is_conv: cloud_str = "conv" else: cloud_str = "strat" Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape model.ds['sub_col_beta_p_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) model.ds['sub_col_alpha_p_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) model.ds['sub_col_OD_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) for hyd_type in hyd_types: WC = model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * p_values / \ (instrument.R_d * (t_values + 273.15)) if is_conv: empr_array = model.ds[model.conv_re_fields[hyd_type]].values else: empr_array = model.ds[model.strat_re_fields[hyd_type]].values if hyd_type == "cl" or hyd_type == "pl": model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( (3 * WC) / (2 * model.Rho_hyd[hyd_type] * 1e-6 * np.tile(empr_array, (model.num_subcolumns, 1, 1))), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) else: # Heymsfield et al. (2014) a = 0.00532 * (t_values + 90) ** 2.55 b = 1.31 * np.exp(0.0047 * t_values) a = np.tile(a, (model.num_subcolumns, 1, 1)) b = np.tile(b, (model.num_subcolumns, 1, 1)) model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( (WC / a) ** (1 / b), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)] = \ model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] / \ model.lidar_ratio[hyd_type].magnitude model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] = \ model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)] = \ model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model = accumulate_OD(model, is_conv, z_values, hyd_type, OD_from_sfc, **kwargs) model.ds["sub_col_beta_p_tot_%s" % cloud_str] += \ model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model.ds["sub_col_alpha_p_tot_%s" % cloud_str] += \ model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model.ds["sub_col_OD_tot_%s" % cloud_str] += \ model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].fillna(0) return model
[docs] def calc_lidar_bulk(instrument, model, is_conv, p_values, z_values, OD_from_sfc=True, hyd_types=None, mie_for_ice=False, **kwargs): """ Calculates the lidar stratiform or convective backscatter, extinction, and optical depth in a sub-columns using bulk scattering LUTs assuming geometric scatterers (radiation scheme logic). Effective radii for each hydrometeor class must be provided (in model.ds). Parameters ---------- instrument: Instrument The instrument to simulate. The instrument must be a lidar. model: Model The model to generate the parameters for. is_conv: bool True if the cell is convective p_values: ndarray model output pressure array in Pa. z_values: ndarray model output height array in m. OD_from_sfc: bool If True, then calculate optical depth from the surface. hyd_types: list or None list of hydrometeor names to include in calcuation. using default Model subclass types if None. mie_for_ice: bool If True, using bulk mie caculation LUTs. Otherwise, currently using the bulk C6 scattering LUTs for 8-column severly roughned aggregate. Additonal keyword arguments are passed into :py:func:`emc2.simulator.lidar_moments.accumulate_OD`. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ hyd_types = model.set_hyd_types(hyd_types) optional_ice_classes = ["ci", "pi", "sn", "gr", "ha", "pir", "pid", "pif"] if is_conv: cloud_str = "conv" re_fields = model.conv_re_fields else: cloud_str = "strat" re_fields = model.strat_re_fields n_subcolumns = model.num_subcolumns if model.rad_scheme_family == "CESM": bulk_ice_lut = "CESM_ice" bulk_mie_ice_lut = "mie_ice_CESM_PSD" bulk_liq_lut = "CESM_liq" elif model.rad_scheme_family == "ModelE": bulk_ice_lut = "E3_ice" bulk_mie_ice_lut = "mie_ice_E3_PSD" bulk_liq_lut = "E3_liq" else: raise ValueError(f"Unknown radiation scheme family: {model.rad_scheme_family}") Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape model.ds['sub_col_beta_p_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) model.ds['sub_col_alpha_p_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) model.ds['sub_col_OD_tot_%s' % cloud_str] = xr.DataArray( np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims) rhoa_dz = np.tile(np.abs(np.diff(p_values, axis=1, append=0.)) / instrument.g, (model.num_subcolumns, 1, 1)) dz = np.tile(np.diff(z_values, axis=1, append=0.), (model.num_subcolumns, 1, 1)) for hyd_type in hyd_types: if hyd_type[-1] == 'l': rho_b = model.Rho_hyd[hyd_type] # bulk water re_array = np.tile(model.ds[re_fields[hyd_type]], (model.num_subcolumns, 1, 1)) if model.lambda_field is not None: # assuming my and lambda can be provided only for liq hydrometeors if not model.lambda_field[hyd_type] is None: lambda_array = model.ds[model.lambda_field[hyd_type]].values mu_array = model.ds[model.mu_field[hyd_type]].values else: rho_b = instrument.rho_i # bulk ice rho_hyd = model.Rho_hyd[hyd_type] if rho_hyd == 'variable': rho_hyd = model.ds[model.variable_density[hyd_type]].values fi_factor = model.fluffy[hyd_type].magnitude * rho_hyd / rho_b + \ (1 - model.fluffy[hyd_type].magnitude) * (rho_hyd / rho_b) ** (1 / 3) re_array = np.tile(model.ds[re_fields[hyd_type]] * fi_factor, (model.num_subcolumns, 1, 1)) tau_hyd = np.where(model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] > 0, 3 * model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * rhoa_dz / (2 * rho_b * re_array * 1e-6), 0) A_hyd = tau_hyd / (2 * dz) # model assumes geometric scatterers if np.isin(hyd_type, optional_ice_classes): if mie_for_ice: r_eff_bulk = instrument.bulk_table[bulk_mie_ice_lut]["r_e"].values.copy() Qback_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_back"].values Qext_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_ext"].values else: r_eff_bulk = instrument.bulk_table[bulk_ice_lut]["r_e"].values.copy() Qback_bulk = instrument.bulk_table[bulk_ice_lut]["Q_back"].values Qext_bulk = instrument.bulk_table[bulk_ice_lut]["Q_ext"].values else: if model.rad_scheme_family in ["CESM"]: # rad families that have bulk LUTs vs. lambda and mu mu_b = np.tile(instrument.bulk_table[bulk_liq_lut]["mu"].values, (instrument.bulk_table[bulk_liq_lut]["lambdas"].size)).flatten() lambda_b = instrument.bulk_table[bulk_liq_lut]["lambda"].values.flatten() else: # rad families that have bulk LUTs vs. r_eff r_eff_bulk = instrument.bulk_table[bulk_liq_lut]["r_e"].values Qback_bulk = instrument.bulk_table[bulk_liq_lut]["Q_back"].values Qext_bulk = instrument.bulk_table[bulk_liq_lut]["Q_ext"].values # The following if condition is to determine if the LUTs are vs. the PSD lambda and mu parameters # The alternative default is to use LUTs vs. r_eff # =========================================================== if np.logical_and(np.isin(hyd_type, ["cl", "pl"]), model.rad_scheme_family in ["CESM"]): print("2-D interpolation of bulk liq lidar backscattering using mu-lambda values") rel_locs = model.ds[model.q_names_stratiform[hyd_type]].values > 0. back_tmp = np.ones_like(model.ds[model.q_names_stratiform[hyd_type]].values, dtype=float) * np.nan ext_tmp = np.copy(back_tmp) interpolator = LinearNDInterpolator(np.stack((mu_b, lambda_b), axis=1), Qback_bulk.flatten()) interp_vals = interpolator(mu_array[rel_locs], lambda_array[rel_locs]) np.place(back_tmp, rel_locs, interp_vals) print("2-D interpolation of bulk liq lidar extinction using mu-lambda values") interpolator = LinearNDInterpolator(np.stack((mu_b, lambda_b), axis=1), Qext_bulk.flatten()) interp_vals = interpolator(mu_array[rel_locs], lambda_array[rel_locs]) np.place(ext_tmp, rel_locs, interp_vals) model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( np.tile(back_tmp, (n_subcolumns, 1, 1)) * A_hyd, dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims).fillna(0) model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( np.tile(ext_tmp, (n_subcolumns, 1, 1)) * A_hyd, dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims).fillna(0) else: model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( np.interp(re_array, r_eff_bulk, Qext_bulk) * A_hyd, dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims).fillna(0) model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray( np.interp(re_array, r_eff_bulk, Qback_bulk) * A_hyd, dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims).fillna(0) model = accumulate_OD(model, is_conv, z_values, hyd_type, OD_from_sfc, **kwargs) model.ds["sub_col_beta_p_tot_%s" % cloud_str] += \ model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model.ds["sub_col_alpha_p_tot_%s" % cloud_str] += \ model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].fillna(0) model.ds["sub_col_OD_tot_%s" % cloud_str] += \ model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].fillna(0) return model
[docs] def calc_lidar_micro(instrument, model, z_values, OD_from_sfc=True, hyd_types=None, mie_for_ice=False, parallel=True, chunk=None, **kwargs): """ Calculates the lidar backscatter, extinction, and optical depth in a given column for the given lidar using the microphysics (MG2) logic. Parameters ---------- instrument: Instrument The instrument to simulate. The instrument must be a lidar. model: Model The model to generate the parameters for. z_values: ndarray model output height array in m. OD_from_sfc: bool If True, then calculate optical depth from the surface. hyd_types: list or None list of hydrometeor names to include in calcuation. using default Model subclass types if None. mie_for_ice: bool If True, using full mie caculation LUTs. Otherwise, currently using the C6 scattering LUTs for 8-column severly roughned aggregate. parallel: bool If True, use parallelism in calculating lidar parameters. chunk: int or None The number of entries to process in one parallel loop. None will send all of the entries to the Dask worker queue at once. Sometimes, Dask will freeze if too many tasks are sent at once due to memory issues, so adjusting this number might be needed if that happens. Additonal keyword arguments are passed into :py:func:`emc2.psd.calc_mu_lambda`. :py:func:`emc2.simulator.lidar_moments.accumulate_OD`. Returns ------- model: :func:`emc2.core.Model` The model with the added simulated lidar parameters. """ hyd_types = model.set_hyd_types(hyd_types) optional_ice_classes = ["ci", "pi", "sn", "gr", "ha", "pir", "pid", "pif"] if model.rad_scheme_family == "CESM": ice_lut = "CESM_ice" ice_diam_var = "p_diam" elif model.rad_scheme_family == "ModelE": ice_lut = "E3_ice" ice_diam_var = "p_diam_eq_V" else: raise ValueError(f"Unknown radiation scheme family: {model.rad_scheme_family}") Dims = model.ds["strat_q_subcolumns_cl"].values.shape for hyd_type in hyd_types: frac_names = "strat_frac_subcolumns_%s" % hyd_type print("Generating stratiform lidar variables for hydrometeor class %s" % hyd_type) if not np.isin("sub_col_beta_p_tot_strat", [x for x in model.ds.keys()]): model.ds["sub_col_beta_p_tot_strat"] = xr.DataArray( np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims) model.ds["sub_col_alpha_p_tot_strat"] = xr.DataArray( np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims) model.ds["sub_col_OD_tot_strat"] = xr.DataArray( np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims) model.ds["sub_col_beta_p_%s_strat" % hyd_type] = xr.DataArray( np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims) model.ds["sub_col_alpha_p_%s_strat" % hyd_type] = xr.DataArray( np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims) if hyd_type in ["cl", "pl"]: # liquid classes if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]: fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds else: raise ValueError(f"no liquid PSD calulation method implemented for scheme {model.mcphys_scheme}") else: # ice classes if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]: # NOTE: NSSL PSD assumed like MG fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds else: raise ValueError(f"no ice PSD calulation method implemented for scheme {model.mcphys_scheme}") N_columns = len(model.ds["subcolumn"]) total_hydrometeor = np.round(model.ds[frac_names].values * N_columns).astype(int) N_0 = fits_ds["N_0"].values mu = fits_ds["mu"].values num_subcolumns = model.num_subcolumns if np.isin(hyd_type, optional_ice_classes): if mie_for_ice: if hyd_type == "ci": hyd_type_2_use = "ci" else: hyd_type_2_use = "pi" # Currently, all optional precipitating ice classes p_diam = instrument.mie_table[hyd_type_2_use]["p_diam"].values beta_p = instrument.mie_table[hyd_type_2_use]["beta_p"].values alpha_p = instrument.mie_table[hyd_type_2_use]["alpha_p"].values else: p_diam = instrument.scat_table[ice_lut][ice_diam_var].values beta_p = instrument.scat_table[ice_lut]["beta_p"].values alpha_p = instrument.scat_table[ice_lut]["alpha_p"].values else: # Liquid classes (assuming only cl and pl) p_diam = instrument.mie_table[hyd_type]["p_diam"].values beta_p = instrument.mie_table[hyd_type]["beta_p"].values alpha_p = instrument.mie_table[hyd_type]["alpha_p"].values lambdas = fits_ds["lambda"].values _calc_lidar = lambda x: _calc_strat_lidar_properties( x, N_0, lambdas, mu, p_diam, total_hydrometeor, hyd_type, num_subcolumns, p_diam, beta_p, alpha_p) if parallel: print("Doing parallel lidar calculations for %s" % hyd_type) if chunk is None: tt_bag = db.from_sequence(np.arange(0, Dims[1], 1)) lists = tt_bag.map(_calc_lidar).compute() else: lists = [] j = 0 while j < Dims[1]: if j + chunk >= Dims[1]: ind_max = Dims[1] else: ind_max = j + chunk print(" Processing columns %d-%d out of %d" % (j, ind_max, Dims[1])) tt_bag = db.from_sequence(np.arange(j, ind_max, 1)) lists += tt_bag.map(_calc_lidar).compute() j += chunk else: lists = [x for x in map(_calc_lidar, np.arange(0, Dims[1], 1))] beta_p_strat = np.stack([x[0] for x in lists], axis=1) alpha_p_strat = np.stack([x[1] for x in lists], axis=1) model.ds["sub_col_beta_p_%s_strat" % hyd_type][:, :, :] = beta_p_strat model.ds["sub_col_alpha_p_%s_strat" % hyd_type][:, :, :] = alpha_p_strat model.ds["sub_col_beta_p_%s_strat" % hyd_type] = \ model.ds["sub_col_beta_p_%s_strat" % hyd_type].fillna(0) model.ds["sub_col_alpha_p_%s_strat" % hyd_type] = \ model.ds["sub_col_alpha_p_%s_strat" % hyd_type].fillna(0) model = accumulate_OD(model, False, z_values, hyd_type, OD_from_sfc, **kwargs) model.ds["sub_col_beta_p_tot_strat"] += model.ds["sub_col_beta_p_%s_strat" % hyd_type].fillna(0) model.ds["sub_col_alpha_p_tot_strat"] += model.ds["sub_col_alpha_p_%s_strat" % hyd_type].fillna(0) model.ds["sub_col_OD_tot_strat"] += model.ds["sub_col_OD_%s_strat" % hyd_type].fillna(0) return model
[docs] def calc_lidar_moments(instrument, model, is_conv, OD_from_sfc=True, hyd_types=None, parallel=True, eta=1, chunk=None, mie_for_ice=False, use_rad_logic=True, use_empiric_calc=False, **kwargs): """ Calculates the lidar backscatter, extinction, and optical depth in a given column for the given lidar. NOTE: When starting a parallel task (in microphysics approach), it is recommended to wrap the top-level python script calling the EMC^2 processing ('lines_of_code') with the following command (just below the 'import' statements): .. code-block:: python if __name__ == “__main__”: lines_of_code Parameters ---------- instrument: Instrument The instrument to simulate. The instrument must be a lidar. model: Model The model to generate the parameters for. is_conv: bool True if the cell is convective OD_from_sfc: bool If True, then calculate optical depth from the surface. hyd_types: list or None list of hydrometeor names to include in calcuation. using default Model subclass types if None. parallel: bool If True, use parallelism in calculating lidar parameters. eta: float Multiple scattering coefficient. chunk: int or None The number of entries to process in one parallel loop. None will send all of the entries to the Dask worker queue at once. Sometimes, Dask will freeze if too many tasks are sent at once due to memory issues, so adjusting this number might be needed if that happens. mie_for_ice: bool If True, using full mie caculation LUTs. Otherwise, currently using the C6 scattering LUTs for 8-column severly roughned aggregate. use_rad_logic: bool When True using radiation scheme logic in calculations, which includes using the cloud fraction fields utilized in a model radiative scheme, as well as bulk scattering LUTs (effective radii dependent scattering variables). Otherwise, and only in the stratiform case, using the microphysics scheme logic, which includes the cloud fraction fields utilized by the model microphysics scheme and single particle scattering LUTs. NOTE: because of its single-particle calculation method, the microphysics approach is significantly slower than the radiation approach. Also, the cloud fraction logic in these schemes does not necessarilytly fully overlap. use_empirical_calc: bool When True using empirical relations from literature for the fwd calculations (the cloud fraction still follows the scheme logic set by use_rad_logic). Additonal keyword arguments are passed into :py:func:`emc2.psd.calc_mu_lambda`. :py:func:`emc2.simulator.lidar_moments.accumulate_OD`. :py:func:`emc2.simulator.lidar_moments.calc_lidar_empirical`. :py:func:`emc2.simulator.lidar_moments.calc_lidar_bulk`. :py:func:`emc2.simulator.lidar_moments.calc_lidar_micro`. Returns ------- model: :func:`emc2.core.Model` The model dataset with the added simulated lidar parameters. """ hyd_types = model.set_hyd_types(hyd_types) if is_conv: cloud_str = "conv" cloud_str_full = "convective" if np.logical_and(not use_empiric_calc, not use_rad_logic): use_rad_logic = True # Force rad scheme logic if in conv scheme else: cloud_str = "strat" cloud_str_full = "stratiform" if OD_from_sfc: OD_str = "model layer base" else: OD_str = "model layer top" if use_empiric_calc: scat_str = "Empirical (no utilized scattering database)" elif mie_for_ice: scat_str = "Mie" else: if model.rad_scheme_family == "CESM": scat_str = "m-D_A-D (D. Mitchell)" elif model.rad_scheme_family == "ModelE": scat_str = "C6" else: raise ValueError(f"Unknown radiation scheme family: {model.rad_scheme_family}") if not instrument.instrument_class.lower() == "lidar": raise ValueError("Instrument must be a lidar!") if "%s_q_subcolumns_cl" % cloud_str not in model.ds.variables.keys(): raise KeyError("Water mixing ratio in %s subcolumns must be generated first!" % cloud_str_full) p_field = model.p_field t_field = model.T_field z_field = model.z_field # Do unit conversions using pint - pressure in Pa, T in K, z in m p_temp = model.ds[p_field].values * getattr(ureg, model.ds[p_field].attrs["units"]) p_values = p_temp.to('pascal').magnitude t_temp = quantity(model.ds[t_field].values, model.ds[t_field].attrs["units"]) t_values = t_temp.to('celsius').magnitude z_temp = model.ds[z_field].values * getattr(ureg, model.ds[z_field].attrs["units"]) z_values = z_temp.to('meter').magnitude del p_temp, t_temp, z_temp model = calc_theory_beta_m(model, instrument.wavelength) beta_m = np.tile(model.ds['sigma_180_vol'].values, (model.num_subcolumns, 1, 1)) T = np.tile(model.ds['tau'].values, (model.num_subcolumns, 1, 1)) t0 = time() if use_empiric_calc: print("Generating %s lidar variables using empirical formulation" % cloud_str_full) method_str = "Empirical" model = calc_lidar_empirical(instrument, model, is_conv, p_values, t_values, z_values, OD_from_sfc=OD_from_sfc, hyd_types=hyd_types, **kwargs) elif use_rad_logic: print("Generating %s lidar variables using radiation logic" % cloud_str_full) method_str = "Bulk (radiation logic)" model = calc_lidar_bulk(instrument, model, is_conv, p_values, z_values, OD_from_sfc=OD_from_sfc, mie_for_ice=mie_for_ice, hyd_types=hyd_types, **kwargs) else: print("Generating %s lidar variables using microphysics logic (slowest processing)" % cloud_str_full) method_str = "LUTs (microphysics logic)" calc_lidar_micro(instrument, model, z_values, OD_from_sfc=OD_from_sfc, hyd_types=hyd_types, mie_for_ice=mie_for_ice, parallel=parallel, chunk=chunk, **kwargs) for hyd_type in hyd_types: model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].attrs["long_name"] = \ "Particulate backscatter cross section from %s %s hydrometeors" % (cloud_str_full, hyd_type) model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].attrs["units"] = r"$m^{-1} sr^{-1}$" model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].attrs["Processing method"] = method_str model.ds["sub_col_beta_p_%s_%s" % (hyd_type, cloud_str)].attrs["Ice scattering database"] = scat_str model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].attrs["long_name"] = \ "Particulate extinction cross section from %s %s hydrometeors" % (cloud_str_full, hyd_type) model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].attrs["units"] = r"$m^{-1}$" model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].attrs["Processing method"] = method_str model.ds["sub_col_alpha_p_%s_%s" % (hyd_type, cloud_str)].attrs["Ice scattering database"] = scat_str model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].attrs["long_name"] = \ "Cumulative optical depth at %s from %s %s hydrometeors" % \ (OD_str, cloud_str_full, hyd_type) model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].attrs["units"] = "1" model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].attrs["Processing method"] = method_str model.ds["sub_col_OD_%s_%s" % (hyd_type, cloud_str)].attrs["Ice scattering database"] = scat_str model.ds["sub_col_beta_p_tot_%s" % cloud_str].attrs["long_name"] = \ "Backscatter coefficient from all %s hydrometeors" % cloud_str_full model.ds["sub_col_beta_p_tot_%s" % cloud_str].attrs["units"] = r"$m^{-1} sr^{-1}$" model.ds["sub_col_beta_p_tot_%s" % cloud_str].attrs["Processing method"] = method_str model.ds["sub_col_beta_p_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str model.ds["sub_col_alpha_p_tot_%s" % cloud_str].attrs["long_name"] = \ "Extinction coefficient from all %s hydrometeors" % cloud_str_full model.ds["sub_col_alpha_p_tot_%s" % cloud_str].attrs["units"] = r"$m^{-1}$" model.ds["sub_col_alpha_p_tot_%s" % cloud_str].attrs["Processing method"] = method_str model.ds["sub_col_alpha_p_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str model.ds["sub_col_OD_tot_%s" % cloud_str].attrs["long_name"] = \ "Cumulative optical depth at %s from all %s hydrometeors" % \ (OD_str, cloud_str_full) model.ds["sub_col_OD_tot_%s" % cloud_str].attrs["units"] = "1" model.ds["sub_col_OD_tot_%s" % cloud_str].attrs["Processing method"] = method_str model.ds["sub_col_OD_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str model.ds["sub_col_beta_att_tot_%s" % cloud_str] = ( beta_m + model.ds["sub_col_beta_p_tot_%s" % cloud_str]) * \ T * np.exp(-2 * eta * model.ds["sub_col_OD_tot_%s" % cloud_str]) model.ds["sub_col_beta_att_tot_%s" % cloud_str].attrs["long_name"] = \ "Total attenuated backscatter from all %s hydrometeors (including atmospheric extinction)" % cloud_str_full model.ds["sub_col_beta_att_tot_%s" % cloud_str].attrs["units"] = r"$m^{-1} sr^{-1}$" model.ds["sub_col_beta_att_tot_%s" % cloud_str].attrs["Processing method"] = method_str model.ds["sub_col_beta_att_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str print("Done! total processing time = %.2fs" % (time() - t0)) return model
def _calc_strat_lidar_properties(tt, N_0, lambdas, mu, p_diam, total_hydrometeor, hyd_type, num_subcolumns, D, beta_p, alpha_p): Dims = total_hydrometeor.shape beta_p_strat = np.zeros((num_subcolumns, Dims[2])) alpha_p_strat = np.zeros((num_subcolumns, Dims[2])) if tt % 50 == 0: print('Stratiform moment for class %s progress: %d/%d' % (hyd_type, tt, Dims[1])) for k in range(Dims[2]): if np.all(total_hydrometeor[:, tt, k] == 0): continue N_D = [] for i in range(num_subcolumns): N_0_tmp = N_0[i, tt, k] lambda_tmp = lambdas[i, tt, k] mu_temp = mu[i, tt, k] N_D.append(N_0_tmp * p_diam ** mu_temp * np.exp(-lambda_tmp * p_diam)) N_D = np.stack(N_D, axis=0) Calc_tmp = np.tile(beta_p, (num_subcolumns, 1)) * N_D beta_p_strat[:, k] = np.trapz(Calc_tmp, x=D, axis=1).astype('float64') Calc_tmp = np.tile(alpha_p, (num_subcolumns, 1)) * N_D alpha_p_strat[:, k] = np.trapz(Calc_tmp, x=D, axis=1).astype('float64') return beta_p_strat, alpha_p_strat