import xarray as xr
import numpy as np
import dask.bag as db
import dask.array as da
from time import time
from scipy.interpolate import LinearNDInterpolator
from .attenuation import calc_radar_atm_attenuation
from .psd import calc_mu_lambda, calc_velocity_nssl
from ..core.instrument import ureg, quantity
[docs]
def calc_total_reflectivity(model, detect_mask=False):
"""
This method calculates the total (convective + stratiform) reflectivity (Ze).
Parameters
----------
model: :func:`emc2.core.Model` class
The model to calculate the parameters for.
detect_mask: bool
True - generating a mask determining signal below noise floor.
Returns
-------
model: :func:`emc2.core.Model`
The xarray Dataset containing the calculated radar moments.
"""
Ze_tot = np.where(np.isfinite(model.ds["sub_col_Ze_tot_strat"].values),
10 ** (model.ds["sub_col_Ze_tot_strat"].values / 10.), 0)
if model.process_conv:
Ze_tot = np.where(np.isfinite(model.ds["sub_col_Ze_tot_conv"].values), Ze_tot +
10 ** (model.ds["sub_col_Ze_tot_conv"].values / 10.), Ze_tot)
model.ds['sub_col_Ze_tot'] = xr.DataArray(10 * np.log10(Ze_tot), dims=model.ds["sub_col_Ze_tot_strat"].dims)
model.ds['sub_col_Ze_tot'].values = np.where(np.isinf(model.ds['sub_col_Ze_tot'].values), np.nan,
model.ds['sub_col_Ze_tot'].values)
model.ds['sub_col_Ze_tot'].attrs["long_name"] = \
"Total (convective + stratiform) equivalent radar reflectivity factor"
model.ds['sub_col_Ze_tot'].attrs["units"] = "dBZ"
if model.process_conv:
model.ds['sub_col_Ze_att_tot'] = 10 * np.log10(Ze_tot *
model.ds['hyd_ext_conv'].fillna(1) * model.ds[
'hyd_ext_strat'].fillna(1) *
model.ds['atm_ext'].fillna(1))
else:
model.ds['sub_col_Ze_att_tot'] = 10 * np.log10(Ze_tot *
model.ds['hyd_ext_strat'].fillna(1) *
model.ds['atm_ext'].fillna(1))
model.ds['sub_col_Ze_att_tot'].values = np.where(np.isinf(model.ds['sub_col_Ze_att_tot'].values), np.nan,
model.ds['sub_col_Ze_att_tot'].values)
model.ds['sub_col_Ze_att_tot'].attrs["long_name"] = \
"Total (convective + stratiform) attenuated (hydrometeor + gaseous) equivalent radar reflectivity factor"
model.ds['sub_col_Ze_att_tot'].attrs["units"] = "dBZ"
model.ds["sub_col_Ze_tot"] = model.ds["sub_col_Ze_tot"].where(np.isfinite(model.ds["sub_col_Ze_tot"]))
model.ds["sub_col_Ze_att_tot"] = model.ds["sub_col_Ze_att_tot"].where(
np.isfinite(model.ds["sub_col_Ze_att_tot"]))
model.ds["detect_mask"] = model.ds["Ze_min"] >= model.ds["sub_col_Ze_att_tot"]
model.ds["detect_mask"].attrs["long_name"] = "Radar detectability mask"
model.ds["detect_mask"].attrs["units"] = ("1 = radar signal below noise floor, 0 = signal detected")
return model
[docs]
def accumulate_attenuation(model, is_conv, z_values, hyd_ext, atm_ext, OD_from_sfc=True,
use_empiric_calc=False, **kwargs):
"""
Accumulates atmospheric and condensate radar attenuation (linear units) from TOA or the surface.
Output fields are condensate and atmospheric transmittance.
Parameters
----------
model: Model
The model to generate the parameters for.
is_conv: bool
True if the cell is convective
z_values: ndarray
model output height array in m.
hyd_ext: ndarray
fwd calculated extinction due to condensate per layer (empirical - dB km^-1, m^-1 otherwise).
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
use_empirical_calc: bool
When True using empirical relations from literature for the fwd calculations
(the cloud fraction still follows the scheme logic set by use_rad_logic).
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
if is_conv:
cloud_str = "conv"
else:
cloud_str = "strat"
if not use_empiric_calc:
hyd_ext = hyd_ext * 1e3
if OD_from_sfc:
OD_str = "model layer base"
else:
OD_str = "model layer top"
n_subcolumns = model.num_subcolumns
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
if OD_from_sfc:
dz = np.diff(z_values / 1e3, axis=1, prepend=0.)
hyd_ext = np.cumsum(
np.tile(dz, (n_subcolumns, 1, 1)) *
np.concatenate((np.zeros(Dims[:2] + (1,)), hyd_ext[:, :, :-1]), axis=2), axis=2)
atm_ext = np.cumsum(dz * np.concatenate((np.zeros((Dims[1],) + (1,)),
atm_ext[:, :-1]), axis=1), axis=1)
else:
dz = np.diff(z_values / 1e3, axis=1, append=0.)
hyd_ext = np.flip(
np.cumsum(np.flip(np.tile(dz, (n_subcolumns, 1, 1)) *
np.concatenate((hyd_ext[:, :, 1:],
np.zeros(Dims[:2] + (1,))), axis=2),
axis=2), axis=2), axis=2)
atm_ext = np.flip(
np.cumsum(np.flip(dz * np.concatenate((atm_ext[:, 1:],
np.zeros((Dims[1],) + (1,))), axis=1), axis=1), axis=1), axis=1)
if use_empiric_calc:
model.ds['hyd_ext_%s' % cloud_str] = xr.DataArray(10 ** (-2 * hyd_ext / 10.),
dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
else:
model.ds['hyd_ext_%s' % cloud_str] = \
xr.DataArray(np.exp(-2 * hyd_ext), dims=model.ds["sub_col_Ze_tot_%s" % cloud_str].dims)
model.ds['atm_ext'] = xr.DataArray(10 ** (-2 * atm_ext / 10), dims=model.ds[model.T_field].dims)
model.ds['hyd_ext_%s' % cloud_str].attrs["long_name"] = \
"Two-way %s hydrometeor transmittance at %s" % (cloud_str, OD_str)
model.ds['hyd_ext_%s' % cloud_str].attrs["units"] = "1"
model.ds['atm_ext'].attrs["long_name"] = \
"Two-way atmospheric transmittance due to H2O and O2 at %s" % OD_str
model.ds['atm_ext'].attrs["units"] = "1"
return model
[docs]
def calc_radar_empirical(instrument, model, is_conv, p_values, t_values, z_values, atm_ext,
OD_from_sfc=True, hyd_types=None, **kwargs):
"""
Calculates the radar stratiform or convective reflectivity and attenuation
in a sub-columns using empirical formulation from literature.
Parameters
----------
instrument: :func:`emc2.core.Instrument` class
The instrument to calculate the reflectivity parameters for.
model: :func:`emc2.core.Model` class
The model to calculate the parameters for.
is_conv: bool
True if the cell is convective
p_values: ndarray
model output pressure array in Pa.
t_values: ndarray
model output temperature array in C.
z_values: ndarray
model output height array in m.
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calcuation. using default Model subclass types if None.
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
hyd_types = model.set_hyd_types(hyd_types)
if is_conv:
cloud_str = "conv"
else:
cloud_str = "strat"
if not instrument.instrument_class.lower() == "radar":
raise ValueError("Reflectivity can only be derived from a radar!")
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
model.ds["sub_col_Ze_tot_%s" % cloud_str] = xr.DataArray(
np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
for hyd_type in hyd_types:
q_field = "%s_q_subcolumns_%s" % (cloud_str, hyd_type)
WC_tot = np.zeros(Dims)
WC = model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * p_values / \
(instrument.R_d * (t_values + 273.15)) * 1e3
# Fox and Illingworth (1997)
if hyd_type.lower() == "cl":
Ze_emp = 0.031 * WC ** 1.56
WC_tot += WC
# Hagen and Yuter (2003)
elif hyd_type.lower() == "pl":
Ze_emp = ((WC * 1e3) / 3.4) ** 1.75
WC_tot += WC
else:
# Hogan et al. (2006)
if 2e9 <= instrument.freq < 4e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.0197 * t_values + 1.7) / 0.060) / 10.)
elif 27e9 <= instrument.freq < 40e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.0186 * t_values + 1.63) /
(0.000242 * t_values + 0.0699)) / 10.)
elif 75e9 <= instrument.freq < 110e9:
Ze_emp = 10 ** (((np.log10(WC) + 0.00706 * t_values + 0.992) /
(0.000580 * t_values + 0.0923)) / 10.)
else:
Ze_emp = 10 ** (((np.log10(WC) + 0.0186 * t_values + 1.63) /
(0.000242 * t_values + 0.0699)) / 10.)
var_name = "sub_col_Ze_%s_%s" % (hyd_type, cloud_str)
model.ds[var_name] = xr.DataArray(
Ze_emp.values, dims=model.ds[q_field].dims)
model.ds["sub_col_Ze_tot_%s" % cloud_str] += Ze_emp.fillna(0)
Rho_hyd_cl = model.Rho_hyd["cl"].magnitude
kappa_f = 6 * np.pi / (instrument.wavelength * Rho_hyd_cl) * \
((instrument.eps_liq - 1) / (instrument.eps_liq + 2)).imag * 4.34e6 # dB m^3 g^-1 km^-1
model = accumulate_attenuation(model, is_conv, z_values, WC_tot * kappa_f, atm_ext,
OD_from_sfc=OD_from_sfc, use_empiric_calc=True, **kwargs)
return model
[docs]
def calc_radar_bulk(instrument, model, is_conv, p_values, z_values, atm_ext, OD_from_sfc=True,
hyd_types=None, mie_for_ice=False, **kwargs):
"""
Calculates the radar stratiform or convective reflectivity and attenuation
in a sub-columns using bulk scattering LUTs assuming geometric scatterers
(radiation scheme logic).
Effective radii for each hydrometeor class must be provided (in model.ds).
Parameters
----------
instrument: Instrument
The instrument to simulate. The instrument must be a lidar.
model: Model
The model to generate the parameters for.
is_conv: bool
True if the cell is convective
p_values: ndarray
model output pressure array in Pa.
z_values: ndarray
model output height array in m.
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calcuation. using default Model subclass types if None.
mie_for_ice: bool
If True, using bulk mie caculation LUTs. Otherwise, currently using the bulk C6
scattering LUTs for 8-column severly roughned aggregate.
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
hyd_types = model.set_hyd_types(hyd_types)
optional_ice_classes = ["ci", "pi", "sn", "gr", "ha", "pir", "pid", "pif"]
n_subcolumns = model.num_subcolumns
if is_conv:
cloud_str = "conv"
re_fields = model.conv_re_fields
else:
cloud_str = "strat"
re_fields = model.strat_re_fields
if model.rad_scheme_family == "CESM":
bulk_ice_lut = "CESM_ice"
bulk_mie_ice_lut = "mie_ice_CESM_PSD"
bulk_liq_lut = "CESM_liq"
elif model.rad_scheme_family == "ModelE":
bulk_ice_lut = "E3_ice"
bulk_mie_ice_lut = "mie_ice_E3_PSD"
bulk_liq_lut = "E3_liq"
else:
raise ValueError(f"Unknown radiation scheme family: {model.rad_scheme_family}")
Dims = model.ds["%s_q_subcolumns_cl" % cloud_str].shape
model.ds["sub_col_Ze_tot_%s" % cloud_str] = xr.DataArray(
np.zeros(Dims), dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
hyd_ext = np.zeros(Dims)
rhoa_dz = np.tile(
np.abs(np.diff(p_values, axis=1, append=0.)) / instrument.g,
(n_subcolumns, 1, 1))
dz = np.tile(
np.diff(z_values, axis=1, append=0.), (n_subcolumns, 1, 1))
for hyd_type in hyd_types:
if hyd_type[-1] == 'l':
rho_b = model.Rho_hyd[hyd_type] # bulk water
re_array = np.tile(model.ds[re_fields[hyd_type]].values, (n_subcolumns, 1, 1))
if model.lambda_field is not None: # assuming my and lambda can be provided only for liq hydrometeors
if not model.lambda_field[hyd_type] is None:
lambda_array = model.ds[model.lambda_field[hyd_type]].values
mu_array = model.ds[model.mu_field[hyd_type]].values
else:
rho_b = instrument.rho_i.magnitude # bulk ice
if model.Rho_hyd[hyd_type] == 'variable':
rho_hyd = model.ds[model.variable_density[hyd_type]].values
else:
rho_hyd = model.Rho_hyd[hyd_type].magnitude
fi_factor = model.fluffy[hyd_type].magnitude * rho_hyd / rho_b + \
(1 - model.fluffy[hyd_type].magnitude) * (rho_hyd / rho_b) ** (1 / 3)
re_array = np.tile(model.ds[re_fields[hyd_type]].values * fi_factor,
(n_subcolumns, 1, 1))
tau_hyd = np.where(model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] > 0,
3 * model.ds["%s_q_subcolumns_%s" % (cloud_str, hyd_type)] * rhoa_dz /
(2 * rho_b * re_array * 1e-6), 0)
A_hyd = tau_hyd / (2 * dz) # model assumes geometric scatterers
if np.isin(hyd_type, optional_ice_classes):
if mie_for_ice:
r_eff_bulk = instrument.bulk_table[bulk_mie_ice_lut]["r_e"].values.copy()
Qback_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_mie_ice_lut]["Q_ext"].values
else:
r_eff_bulk = instrument.bulk_table[bulk_ice_lut]["r_e"].values.copy()
Qback_bulk = instrument.bulk_table[bulk_ice_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_ice_lut]["Q_ext"].values
else:
if model.rad_scheme_family in ["CESM"]: # rad families that have bulk LUTs vs. lambda and mu
mu_b = np.tile(instrument.bulk_table[bulk_liq_lut]["mu"].values,
(instrument.bulk_table[bulk_liq_lut]["lambdas"].size)).flatten()
lambda_b = instrument.bulk_table[bulk_liq_lut]["lambda"].values.flatten()
else: # rad families that have bulk LUTs vs. r_eff
r_eff_bulk = instrument.bulk_table[bulk_liq_lut]["r_e"].values
Qback_bulk = instrument.bulk_table[bulk_liq_lut]["Q_back"].values
Qext_bulk = instrument.bulk_table[bulk_liq_lut]["Q_ext"].values
# The following if condition is to determine if the LUTs are vs. the PSD lambda and mu parameters
# The alternative default is to use LUTs vs. r_eff
# ===========================================================
if np.logical_and(np.isin(hyd_type, ["cl", "pl"]), model.rad_scheme_family in ["CESM"]):
print("2-D interpolation of bulk liq radar backscattering using mu-lambda values")
rel_locs = model.ds[model.q_names_stratiform[hyd_type]].values > 0.
interpolator = LinearNDInterpolator(np.stack((mu_b, lambda_b), axis=1), Qback_bulk.flatten())
interp_vals = interpolator(mu_array[rel_locs], lambda_array[rel_locs])
back_tmp = np.ones_like(model.ds[model.q_names_stratiform[hyd_type]].values, dtype=float) * np.nan
ext_tmp = np.copy(back_tmp)
np.place(back_tmp, rel_locs,
(interp_vals * instrument.wavelength ** 4) /
(instrument.K_w * np.pi ** 5) * 1e-6)
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray(
np.tile(back_tmp, (n_subcolumns, 1, 1)) * A_hyd,
dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
print("2-D interpolation of bulk liq radar extinction using mu-lambda values")
interpolator = LinearNDInterpolator(np.stack((mu_b, lambda_b), axis=1), Qext_bulk.flatten())
interp_vals = interpolator(mu_array[rel_locs], lambda_array[rel_locs])
np.place(ext_tmp, rel_locs, interp_vals)
hyd_ext += np.tile(ext_tmp, (n_subcolumns, 1, 1)) * A_hyd
else:
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)] = xr.DataArray(
(np.interp(re_array, r_eff_bulk, Qback_bulk) * A_hyd * instrument.wavelength ** 4) /
(instrument.K_w * np.pi ** 5) * 1e-6,
dims=model.ds["%s_q_subcolumns_cl" % cloud_str].dims)
hyd_ext += np.interp(re_array, r_eff_bulk, Qext_bulk) * A_hyd
model.ds["sub_col_Ze_tot_%s" % cloud_str] += model.ds["sub_col_Ze_%s_%s" % (
hyd_type, cloud_str)].fillna(0)
model = accumulate_attenuation(model, is_conv, z_values, hyd_ext, atm_ext,
OD_from_sfc=OD_from_sfc, use_empiric_calc=False, **kwargs)
return model
[docs]
def calc_radar_micro(instrument, model, z_values, atm_ext, OD_from_sfc=True,
hyd_types=None, mie_for_ice=True, parallel=True, chunk=None,
calc_spectral_width=True,
**kwargs):
"""
Calculates the first 3 radar moments (reflectivity, mean Doppler velocity and spectral
width) in a given column for the given radar using the microphysics (MG2) logic.
Parameters
----------
instrument: Instrument
The instrument to simulate. The instrument must be a lidar.
model: Model
The model to generate the parameters for.
z_values: ndarray
model output height array in m.
atm_ext: ndarray
atmospheric attenuation per layer (dB/km).
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calcuation. using default Model subclass types if None.
mie_for_ice: bool
If True, using full mie caculation LUTs. Otherwise, currently using the C6
scattering LUTs for 8-column severly roughned aggregate.
parallel: bool
If True, use parallelism in calculating lidar parameters.
chunk: int or None
The number of entries to process in one parallel loop. None will send all of
the entries to the Dask worker queue at once. Sometimes, Dask will freeze if
too many tasks are sent at once due to memory issues, so adjusting this number
might be needed if that happens.
calc_spectral_width: bool
If False, skips spectral width calculations since these are not always needed for an application
and are the most computationally expensive. Default is True.
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.psd.calc_mu_lambda`.
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
Returns
-------
model: :func:`emc2.core.Model`
The model with the added simulated lidar parameters.
"""
hyd_types = model.set_hyd_types(hyd_types)
optional_ice_classes = ["ci", "pi", "sn", "gr", "ha", "pir", "pid", "pif"]
method_str = "LUTs (microphysics logic)"
Dims = model.ds["strat_q_subcolumns_cl"].values.shape
if mie_for_ice:
scat_str = "Mie"
else:
if model.rad_scheme_family == "CESM":
scat_str = "m-D_A-D (D. Mitchell)"
ice_lut = "CESM_ice"
ice_diam_var = "p_diam"
elif model.rad_scheme_family == "ModelE":
scat_str = "C6"
ice_lut = "E3_ice"
ice_diam_var = "p_diam_eq_V"
else:
raise ValueError(f"Unknown radiation scheme family: {model.rad_scheme_family}")
moment_denom_tot = np.zeros(Dims)
V_d_numer_tot = np.zeros(Dims)
sigma_d_numer_tot = np.zeros(Dims)
for hyd_type in hyd_types:
print("Calculating moments for hydrometeor %s" % hyd_type)
frac_names = "strat_frac_subcolumns_%s" % hyd_type
n_names = "strat_n_subcolumns_%s" % hyd_type
if not np.isin("sub_col_Ze_tot_strat", [x for x in model.ds.keys()]):
model.ds["sub_col_Ze_tot_strat"] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
model.ds["sub_col_Vd_tot_strat"] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
model.ds["sub_col_sigma_d_tot_strat"] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
model.ds["sub_col_Ze_%s_strat" % hyd_type] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
model.ds["sub_col_Vd_%s_strat" % hyd_type] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
model.ds["sub_col_sigma_d_%s_strat" % hyd_type] = xr.DataArray(
np.zeros(Dims), dims=model.ds.strat_q_subcolumns_cl.dims)
if hyd_type in ["cl", "pl"]: # liquid classes
if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]:
fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds
else:
raise ValueError(f"no liquid PSD calulation method implemented for scheme {model.mcphys_scheme}")
else: # ice classes
if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]: # NOTE: NSSL PSD assumed like MG
fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds
else:
raise ValueError(f"no ice PSD calulation method implemented for scheme {model.mcphys_scheme}")
N_0 = fits_ds["N_0"].values
lambdas = fits_ds["lambda"].values
mu = fits_ds["mu"].values
total_hydrometeor = model.ds[frac_names].values * model.ds[n_names].values
beta_pv = None
kdp_factor = None
if np.isin(hyd_type, optional_ice_classes):
if mie_for_ice:
if hyd_type == "ci":
hyd_type_2_use = "ci"
else:
hyd_type_2_use = "pi" # Currently, all optional precipitating ice classes
p_diam = instrument.mie_table[hyd_type_2_use]["p_diam"].values
beta_p = instrument.mie_table[hyd_type_2_use]["beta_p"].values
alpha_p = instrument.mie_table[hyd_type_2_use]["alpha_p"].values
else:
p_diam = instrument.scat_table[ice_lut][ice_diam_var].values
beta_p = instrument.scat_table[ice_lut]["beta_p"].values
alpha_p = instrument.scat_table[ice_lut]["alpha_p"].values
else: # Liquid classes (assuming only cl and pl)
p_diam = instrument.mie_table[hyd_type]["p_diam"].values
beta_p = instrument.mie_table[hyd_type]["beta_p"].values
alpha_p = instrument.mie_table[hyd_type]["alpha_p"].values
num_subcolumns = model.num_subcolumns
if model.mcphys_scheme == "nssl":
rhoe = model.Rho_hyd[hyd_type]
if rhoe == 'variable':
rhoe = model.ds[model.variable_density[hyd_type]].values[:]
v_tmp = 'variable'
else:
v_tmp = calc_velocity_nssl(p_diam, rhoe, hyd_type)
else:
v_tmp = model.vel_param_a[hyd_type] * p_diam ** model.vel_param_b[hyd_type]
v_tmp = -v_tmp.magnitude
rhoe = None
if hyd_type == "cl":
_calc_liquid = lambda x: _calculate_observables_liquid(
x, total_hydrometeor, N_0, lambdas, mu,
alpha_p, beta_p, v_tmp, num_subcolumns, instrument, p_diam)
if parallel:
print("Doing parallel radar calculations for %s" % hyd_type)
if chunk is None:
tt_bag = db.from_sequence(np.arange(0, Dims[1], 1))
my_tuple = tt_bag.map(_calc_liquid).compute()
else:
my_tuple = []
j = 0
while j < Dims[1]:
if j + chunk >= Dims[1]:
ind_max = Dims[1]
else:
ind_max = j + chunk
print("Stage 1 of 2: processing columns %d-%d out of %d" % (j, ind_max, Dims[1]))
tt_bag = db.from_sequence(np.arange(j, ind_max, 1))
my_tuple += tt_bag.map(_calc_liquid).compute()
j += chunk
else:
my_tuple = [x for x in map(
_calc_liquid, np.arange(0, Dims[1], 1))]
V_d_numer_tot = np.nan_to_num(
np.stack([x[0] for x in my_tuple], axis=1))
moment_denom_tot = np.nan_to_num(
np.stack([x[1] for x in my_tuple], axis=1))
hyd_ext = np.nan_to_num(np.stack([x[2] for x in my_tuple], axis=1))
model.ds["sub_col_Ze_cl_strat"][:, :, :] = np.stack(
[x[3] for x in my_tuple], axis=1)
model.ds["sub_col_Vd_cl_strat"][:, :, :] = np.stack(
[x[4] for x in my_tuple], axis=1)
if calc_spectral_width:
model.ds["sub_col_sigma_d_cl_strat"][:, :, :] = np.stack(
[x[5] for x in my_tuple], axis=1)
del my_tuple
else:
sub_q_array = model.ds["strat_q_subcolumns_%s" % hyd_type].values
_calc_other = lambda x: _calculate_other_observables(
x, total_hydrometeor, N_0, lambdas, model.num_subcolumns,
beta_p, alpha_p, v_tmp,
instrument.wavelength, instrument.K_w,
sub_q_array, hyd_type, p_diam, beta_pv, rhoe, model.mcphys_scheme)
if parallel:
print("Doing parallel radar calculation for %s" % hyd_type)
if chunk is None:
tt_bag = db.from_sequence(np.arange(0, Dims[1], 1))
my_tuple = tt_bag.map(_calc_other).compute()
else:
my_tuple = []
j = 0
while j < Dims[1]:
if j + chunk >= Dims[1]:
ind_max = Dims[1]
else:
ind_max = j + chunk
print("Stage 1 of 2: Processing columns %d-%d out of %d" % (j, ind_max, Dims[1]))
tt_bag = db.from_sequence(np.arange(j, ind_max, 1))
my_tuple += tt_bag.map(_calc_other).compute()
j += chunk
else:
my_tuple = [x for x in map(
_calc_other, np.arange(0, Dims[1], 1))]
V_d_numer_tot += np.nan_to_num(np.stack([x[0] for x in my_tuple], axis=1))
moment_denom_tot += np.nan_to_num(np.stack([x[1] for x in my_tuple], axis=1))
hyd_ext = np.nan_to_num(np.stack([x[2] for x in my_tuple], axis=1))
model.ds["sub_col_Ze_%s_strat" % hyd_type][:, :, :] = np.stack([x[3] for x in my_tuple], axis=1)
model.ds["sub_col_Vd_%s_strat" % hyd_type][:, :, :] = np.stack([x[4] for x in my_tuple], axis=1)
if calc_spectral_width:
model.ds["sub_col_sigma_d_%s_strat" % hyd_type][:, :, :] = np.stack([x[5] for x in my_tuple], axis=1)
if beta_pv is not None:
Zv = np.nan_to_num(np.stack([x[6] for x in my_tuple], axis=1))
model.ds["sub_col_Zdr_%s_strat" % hyd_type] = model.ds["sub_col_Ze_%s_strat" % hyd_type] / Zv
if "sub_col_Ze_tot_strat" in model.ds.variables.keys():
model.ds["sub_col_Ze_tot_strat"] += model.ds["sub_col_Ze_%s_strat" % hyd_type].fillna(0)
else:
model.ds["sub_col_Ze_tot_strat"] = model.ds["sub_col_Ze_%s_strat" % hyd_type].fillna(0)
model.ds["sub_col_Vd_%s_strat" % hyd_type].attrs["long_name"] = \
"Mean Doppler velocity from stratiform %s hydrometeors" % hyd_type
model.ds["sub_col_Vd_%s_strat" % hyd_type].attrs["units"] = r"$m\ s^{-1}$"
model.ds["sub_col_Vd_%s_strat" % hyd_type].attrs["Processing method"] = method_str
model.ds["sub_col_sigma_d_%s_strat" % hyd_type].attrs["long_name"] = \
"Spectral width from stratiform %s hydrometeors" % hyd_type
model.ds["sub_col_sigma_d_%s_strat" % hyd_type].attrs["units"] = r"$m\ s^{-1}$"
model.ds["sub_col_sigma_d_%s_strat" % hyd_type].attrs["Processing method"] = method_str
model.ds["sub_col_Vd_tot_strat"] = xr.DataArray(V_d_numer_tot / moment_denom_tot,
dims=model.ds["sub_col_Ze_tot_strat"].dims)
if calc_spectral_width:
print("Now calculating total spectral width (this may take some time)")
for hyd_type in hyd_types:
if hyd_type in ["cl", "pl"]: # liquid classes
if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]:
fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds
else: # ice classes
if model.mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]: # NOTE: NSSL PSD assumed like MG
fits_ds = calc_mu_lambda(model, hyd_type, subcolumns=True, **kwargs).ds
N_0 = fits_ds["N_0"].values
lambdas = fits_ds["lambda"].values
mu = fits_ds["mu"].values
if np.isin(hyd_type, optional_ice_classes):
if mie_for_ice:
if hyd_type == "ci":
hyd_type_2_use = "ci"
else:
hyd_type_2_use = "pi" # Currently, all optional precipitating ice classes
p_diam = instrument.mie_table[hyd_type_2_use]["p_diam"].values
beta_p = instrument.mie_table[hyd_type_2_use]["beta_p"].values
alpha_p = instrument.mie_table[hyd_type_2_use]["alpha_p"].values
else:
p_diam = instrument.scat_table[ice_lut][ice_diam_var].values
beta_p = instrument.scat_table[ice_lut]["beta_p"].values
alpha_p = instrument.scat_table[ice_lut]["alpha_p"].values
else: # Liquid classes (assuming only cl and pl)
p_diam = instrument.mie_table[hyd_type]["p_diam"].values
beta_p = instrument.mie_table[hyd_type]["beta_p"].values
alpha_p = instrument.mie_table[hyd_type]["alpha_p"].values
if model.mcphys_scheme == "nssl":
rhoe = model.Rho_hyd[hyd_type]
if rhoe == 'variable':
rhoe = model.ds[model.variable_density[hyd_type]].values[:]
v_tmp = 'variable'
else:
v_tmp = calc_velocity_nssl(p_diam, rhoe, hyd_type)
elif model.mcphys_scheme.lower() in ["mg2", "mg", "morrison"]: # power-law velocity schemes
v_tmp = model.vel_param_a[hyd_type] * p_diam ** model.vel_param_b[hyd_type]
v_tmp = -v_tmp.magnitude
rhoe = None
vel_param_a = model.vel_param_a
vel_param_b = model.vel_param_b
frac_names = "strat_frac_subcolumns_%s" % hyd_type
n_names = "strat_n_subcolumns_%s" % hyd_type
total_hydrometeor = model.ds[frac_names] * model.ds[n_names]
Vd_tot = model.ds["sub_col_Vd_tot_strat"].values
if hyd_type == "cl":
_calc_sigma_d_liq = lambda x: _calc_sigma_d_tot_cl(
x, N_0, lambdas, mu, instrument,
vel_param_a, vel_param_b, total_hydrometeor,
p_diam, Vd_tot, num_subcolumns, model.mcphys_scheme)
if parallel:
if chunk is None:
tt_bag = db.from_sequence(np.arange(0, Dims[1], 1))
sigma_d_numer = tt_bag.map(_calc_sigma_d_liq).compute()
else:
sigma_d_numer = []
j = 0
while j < Dims[1]:
if j + chunk >= Dims[1]:
ind_max = Dims[1]
else:
ind_max = j + chunk
print("Stage 2 of 2: Processing columns %d-%d out of %d" % (j, ind_max, Dims[1]))
tt_bag = db.from_sequence(np.arange(j, ind_max, 1))
sigma_d_numer += tt_bag.map(_calc_sigma_d_liq).compute()
j += chunk
else:
sigma_d_numer = [x for x in map(_calc_sigma_d_liq, np.arange(0, Dims[1], 1))]
sigma_d_numer_tot = np.nan_to_num(np.stack([x[0] for x in sigma_d_numer], axis=1))
else:
sub_q_array = model.ds["strat_q_subcolumns_%s" % hyd_type].values
_calc_sigma = lambda x: _calc_sigma_d_tot(
x, num_subcolumns, v_tmp, N_0, lambdas, mu,
total_hydrometeor, Vd_tot, sub_q_array, p_diam, beta_p,
rhoe, hyd_type, model.mcphys_scheme)
if parallel:
if chunk is None:
tt_bag = db.from_sequence(np.arange(0, Dims[1], 1))
sigma_d_numer = tt_bag.map(_calc_sigma).compute()
else:
sigma_d_numer = []
j = 0
while j < Dims[1]:
if j + chunk >= Dims[1]:
ind_max = Dims[1]
else:
ind_max = j + chunk
print("Stage 2 of 2: processing columns %d-%d out of %d" % (j, ind_max, Dims[1]))
tt_bag = db.from_sequence(np.arange(j, ind_max, 1))
sigma_d_numer += tt_bag.map(_calc_sigma).compute()
j += chunk
else:
sigma_d_numer = [x for x in map(_calc_sigma, np.arange(0, Dims[1], 1))]
sigma_d_numer_tot += np.nan_to_num(np.stack([x[0] for x in sigma_d_numer], axis=1))
else:
print("User chose to skip spectral width calculations")
model.ds = model.ds.drop_vars(("N_0", "lambda", "mu"))
if calc_spectral_width:
model.ds["sub_col_sigma_d_tot_strat"] = xr.DataArray(np.sqrt(sigma_d_numer_tot / moment_denom_tot),
dims=model.ds["sub_col_Vd_tot_strat"].dims)
model = accumulate_attenuation(model, False, z_values, hyd_ext, atm_ext,
OD_from_sfc=OD_from_sfc, use_empiric_calc=False, **kwargs)
model.ds['sub_col_Vd_tot_strat'].attrs["long_name"] = \
"Mean Doppler velocity from all stratiform hydrometeors"
model.ds['sub_col_Vd_tot_strat'].attrs["units"] = r"$m\ s^{-1}$"
model.ds['sub_col_Vd_tot_strat'].attrs["Processing method"] = method_str
model.ds['sub_col_Vd_tot_strat'].attrs["Ice scattering database"] = scat_str
model.ds['sub_col_sigma_d_tot_strat'].attrs["long_name"] = \
"Spectral width from all stratiform hydrometeors"
model.ds['sub_col_sigma_d_tot_strat'].attrs["units"] = r"$m\ s^{-1}$"
model.ds["sub_col_sigma_d_tot_strat"].attrs["Processing method"] = method_str
model.ds["sub_col_sigma_d_tot_strat"].attrs["Ice scattering database"] = scat_str
return model
[docs]
def calc_radar_moments(instrument, model, is_conv,
OD_from_sfc=True, hyd_types=None, parallel=True, chunk=None, mie_for_ice=False,
use_rad_logic=True, use_empiric_calc=False,calc_spectral_width=True,**kwargs):
"""
Calculates the reflectivity, doppler velocity, and spectral width
in a given column for the given radar.
NOTE:
When starting a parallel task (in microphysics approach), it is recommended
to wrap the top-level python script calling the EMC^2 processing ('lines_of_code')
with the following command (just below the 'import' statements):
.. code-block:: python
if __name__ == “__main__”:
lines_of_code
Parameters
----------
instrument: Instrument
The instrument to simulate. The instrument must be a radar.
model: Model
The model to generate the parameters for.
is_conv: bool
True if the cell is convective
z_field: str
The name of the altitude field to use.
OD_from_sfc: bool
If True, then calculate optical depth from the surface.
hyd_types: list or None
list of hydrometeor names to include in calculation. using default Model subclass types if None.
parallel: bool
If True, then use parallelism to calculate each column quantity.
chunk: None or int
If using parallel processing, only send this number of time periods to the
parallel loop at one time. Sometimes Dask will crash if there are too many
tasks in the queue, so setting this value will help avoid that.
calc_spectral_width: bool
If False, skips spectral width calculations since these are not always needed for an application
and are the most computationally expensive. Default is True.
mie_for_ice: bool
If True, using full mie caculation LUTs. Otherwise, currently using the C6
scattering LUTs for 8-column aggregate at 270 K.
use_rad_logic: bool
When True using radiation scheme logic in calculations, which includes using
the cloud fraction fields utilized in a model radiative scheme, as well as bulk
scattering LUTs (effective radii dependent scattering variables). Otherwise, and
only in the stratiform case, using the microphysics scheme logic, which includes
the cloud fraction fields utilized by the model microphysics scheme and single
particle scattering LUTs.
NOTE: because of its single-particle calculation method, the microphysics
approach is significantly slower than the radiation approach. Also, the cloud
fraction logic in these schemes does not necessarily fully overlap.
use_empirical_calc: bool
When True using empirical relations from literature for the fwd calculations
(the cloud fraction still follows the scheme logic set by use_rad_logic).
Additonal keyword arguments are passed into
:py:func:`emc2.simulator.psd.calc_mu_lambda`.
:py:func:`emc2.simulator.lidar_moments.accumulate_attenuation`.
:py:func:`emc2.simulator.lidar_moments.calc_radar_empirical`.
:py:func:`emc2.simulator.lidar_moments.calc_radar_bulk`.
:py:func:`emc2.simulator.lidar_moments.calc_radar_micro`.
Returns
-------
model: :func:`emc2.core.Model`
The xarray Dataset containing the calculated radar moments.
"""
hyd_types = model.set_hyd_types(hyd_types)
if is_conv:
cloud_str = "conv"
cloud_str_full = "convective"
if np.logical_and(not use_empiric_calc, not use_rad_logic):
use_rad_logic = True # Force rad scheme logic if in conv scheme
else:
cloud_str = "strat"
cloud_str_full = "stratiform"
if use_empiric_calc:
scat_str = "Empirical (no utilized scattering database)"
elif mie_for_ice:
scat_str = "Mie"
else:
scat_str = "C6"
if not instrument.instrument_class.lower() == "radar":
raise ValueError("Instrument must be a radar!")
if "%s_q_subcolumns_cl" % cloud_str not in model.ds.variables.keys():
raise KeyError("Water mixing ratio in %s subcolumns must be generated first!" % cloud_str_full)
p_field = model.p_field
t_field = model.T_field
z_field = model.z_field
# Do unit conversions using pint - pressure in Pa, T in K, z in m
p_temp = model.ds[p_field].values * getattr(ureg, model.ds[p_field].attrs["units"])
p_values = p_temp.to('pascal').magnitude
t_temp = quantity(model.ds[t_field].values, model.ds[t_field].attrs["units"])
t_values = t_temp.to('celsius').magnitude
z_temp = model.ds[z_field].values * getattr(ureg, model.ds[z_field].attrs["units"])
z_values = z_temp.to('meter').magnitude
del p_temp, t_temp, z_temp
kappa_ds = calc_radar_atm_attenuation(instrument, model)
atm_ext = kappa_ds.ds["kappa_att"].values
t0 = time()
if use_empiric_calc:
print("Generating %s radar variables using empirical formulation" % cloud_str_full)
method_str = "Empirical"
model = calc_radar_empirical(instrument, model, is_conv, p_values, t_values, z_values,
atm_ext, OD_from_sfc=OD_from_sfc, hyd_types=hyd_types, **kwargs)
elif use_rad_logic:
print("Generating %s radar variables using radiation logic" % cloud_str_full)
method_str = "Bulk (radiation logic)"
model = calc_radar_bulk(instrument, model, is_conv, p_values, z_values,
atm_ext, OD_from_sfc=OD_from_sfc, mie_for_ice=mie_for_ice, hyd_types=hyd_types,
**kwargs)
else:
print("Generating %s radar variables using microphysics logic (slowest processing)" % cloud_str_full)
method_str = "LUTs (microphysics logic)"
calc_radar_micro(instrument, model, z_values,
atm_ext, OD_from_sfc=OD_from_sfc,
hyd_types=hyd_types, mie_for_ice=mie_for_ice,
parallel=parallel, chunk=chunk, calc_spectral_width=calc_spectral_width,**kwargs)
for hyd_type in hyd_types:
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)] = 10 * np.log10(
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)])
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].values = \
np.where(np.isinf(model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].values), np.nan,
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].values)
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)] = model.ds[
"sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].where(
np.isfinite(model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)]))
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].attrs["long_name"] = \
"Equivalent radar reflectivity factor from %s %s hydrometeors" % (cloud_str_full, hyd_type)
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].attrs["units"] = "dBZ"
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].attrs["Processing method"] = method_str
model.ds["sub_col_Ze_%s_%s" % (hyd_type, cloud_str)].attrs["Ice scattering database"] = scat_str
model.ds['sub_col_Ze_att_tot_%s' % cloud_str] = model.ds["sub_col_Ze_tot_%s" % cloud_str] * \
model.ds['hyd_ext_%s' % cloud_str].fillna(1) * model.ds['atm_ext'].fillna(1)
model.ds["sub_col_Ze_tot_%s" % cloud_str] = model.ds["sub_col_Ze_tot_%s" % cloud_str].where(
np.isfinite(model.ds["sub_col_Ze_tot_%s" % cloud_str]))
model.ds["sub_col_Ze_att_tot_%s" % cloud_str] = model.ds["sub_col_Ze_att_tot_%s" % cloud_str].where(
np.isfinite(model.ds["sub_col_Ze_att_tot_%s" % cloud_str]))
model.ds["sub_col_Ze_tot_%s" % cloud_str] = 10 * np.log10(model.ds["sub_col_Ze_tot_%s" % cloud_str])
model.ds["sub_col_Ze_att_tot_%s" % cloud_str] = 10 * np.log10(model.ds["sub_col_Ze_att_tot_%s" % cloud_str])
model.ds["sub_col_Ze_tot_%s" % cloud_str].values = \
np.where(np.isinf(model.ds["sub_col_Ze_tot_%s" % cloud_str].values), np.nan,
model.ds["sub_col_Ze_tot_%s" % cloud_str].values)
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].values = \
np.where(np.isinf(model.ds["sub_col_Ze_att_tot_%s" % cloud_str].values), np.nan,
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].values)
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].attrs["long_name"] = \
"Attenuated equivalent radar reflectivity factor from all %s hydrometeors" % cloud_str_full
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].attrs["units"] = "dBZ"
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].attrs["Processing method"] = method_str
model.ds["sub_col_Ze_att_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str
model.ds["sub_col_Ze_tot_%s" % cloud_str].attrs["long_name"] = \
"Equivalent radar reflectivity factor from all %s hydrometeors" % cloud_str_full
model.ds["sub_col_Ze_tot_%s" % cloud_str].attrs["units"] = "dBZ"
model.ds["sub_col_Ze_tot_%s" % cloud_str].attrs["Processing method"] = method_str
model.ds["sub_col_Ze_tot_%s" % cloud_str].attrs["Ice scattering database"] = scat_str
model.ds['hyd_ext_%s' % cloud_str].attrs["Processing method"] = method_str
model.ds['hyd_ext_%s' % cloud_str].attrs["Ice scattering database"] = scat_str
print("Done! total processing time = %.2fs" % (time() - t0))
return model
def _calc_sigma_d_tot_cl(tt, N_0, lambdas, mu, instrument,
vel_param_a, vel_param_b, total_hydrometeor,
p_diam, Vd_tot, num_subcolumns, mcphys_scheme):
hyd_type = "cl"
Dims = Vd_tot.shape
sigma_d_numer = np.zeros((Dims[0], Dims[2]), dtype='float64')
moment_denom = np.zeros((Dims[0], Dims[2]), dtype='float64')
if tt % 50 == 0:
print('Stratiform moment for class cl progress: %d/%d' % (tt, total_hydrometeor.shape[1]))
num_diam = len(p_diam)
Dims = Vd_tot.shape
for k in range(Dims[2]):
if np.all(total_hydrometeor[:, tt, k] == 0):
continue
N_0_tmp = N_0[:, tt, k].astype('float64')
N_0_tmp, d_diam_tmp = np.meshgrid(N_0_tmp, p_diam)
lambda_tmp = lambdas[:, tt, k].astype('float64')
lambda_tmp, d_diam_tmp = np.meshgrid(lambda_tmp, p_diam)
mu_temp = mu[:, tt, k] * np.ones_like(lambda_tmp)
N_D = N_0_tmp * d_diam_tmp ** mu_temp * np.exp(-lambda_tmp * d_diam_tmp)
Calc_tmp = np.tile(
instrument.mie_table[hyd_type]["beta_p"].values,
(num_subcolumns, 1)) * N_D.T
moment_denom = np.trapz(Calc_tmp, x=p_diam, axis=1).astype('float64')
if mcphys_scheme.lower() in ["mg2", "mg", "morrison", "nssl"]: # power-law velocity schemes for liquid
v_tmp = vel_param_a[hyd_type] * p_diam ** vel_param_b[hyd_type]
v_tmp = -v_tmp.magnitude.astype('float64')
Calc_tmp2 = (v_tmp - np.tile(Vd_tot[:, tt, k], (num_diam, 1)).T) ** 2 * Calc_tmp.astype('float64')
sigma_d_numer[:, k] = np.trapz(Calc_tmp2, x=p_diam, axis=1)
return sigma_d_numer, moment_denom
def _calc_sigma_d_tot(tt, num_subcolumns, v_tmp, N_0, lambdas, mu,
total_hydrometeor, vd_tot, sub_q_array, p_diam, beta_p, rhoe,
hyd_type, mcphys_scheme):
Dims = vd_tot.shape
sigma_d_numer = np.zeros((Dims[0], Dims[2]), dtype='float64')
moment_denom = np.zeros((Dims[0], Dims[2]), dtype='float64')
num_diam = len(p_diam)
mu = mu.max()
if tt % 50 == 0:
print('Stratiform moment for class progress: %d/%d' % (tt, Dims[1]))
for k in range(Dims[2]):
if np.all(total_hydrometeor[:, tt, k] == 0):
continue
N_0_tmp = N_0[:, tt, k]
lambda_tmp = lambdas[:, tt, k]
if np.all(np.isnan(N_0_tmp)):
continue
N_D = []
for i in range(Dims[0]):
N_D.append(N_0_tmp[i] * p_diam ** mu * np.exp(-lambda_tmp[i] * p_diam))
N_D = np.stack(N_D, axis=1).astype('float64')
Calc_tmp = np.tile(beta_p, (num_subcolumns, 1)) * N_D.T
moment_denom = np.trapz(Calc_tmp, x=p_diam, axis=1).astype('float64')
if rhoe is not None:
if mcphys_scheme.lower() in ["nssl"]: # NSSL parameterization for fall velocity
v_tmp2 = calc_velocity_nssl(rhoe[tt, k], p_diam, hyd_type)
else:
v_tmp2 = v_tmp
else:
v_tmp2 = v_tmp
Calc_tmp2 = (v_tmp2 - np.tile(vd_tot[:, tt, k], (num_diam, 1)).T) ** 2 * Calc_tmp.astype('float64')
Calc_tmp2 = np.trapz(Calc_tmp2, x=p_diam, axis=1)
sigma_d_numer[:, k] = np.where(sub_q_array[:, tt, k] == 0, 0, Calc_tmp2)
return sigma_d_numer, moment_denom
def _calculate_observables_liquid(tt, total_hydrometeor, N_0, lambdas, mu,
alpha_p, beta_p, v_tmp, num_subcolumns, instrument, p_diam):
height_dims = N_0.shape[2]
V_d_numer_tot = np.zeros((N_0.shape[0], height_dims))
V_d = np.zeros((N_0.shape[0], height_dims))
Ze = np.zeros_like(V_d)
Zv = np.zeros_like(V_d)
sigma_d = np.zeros_like(V_d)
moment_denom_tot = np.zeros_like(V_d_numer_tot)
hyd_ext = np.zeros_like(V_d_numer_tot)
num_diam = len(p_diam)
if tt % 50 == 0:
print("Processing column %d/%d" % (tt, N_0.shape[1]))
np.seterr(all="ignore")
for k in range(height_dims):
if np.all(total_hydrometeor[:, tt, k] == 0):
continue
if num_subcolumns > 1:
N_0_tmp = np.squeeze(N_0[:, tt, k])
lambda_tmp = np.squeeze(lambdas[:, tt, k])
mu_temp = np.squeeze(mu[:, tt, k])
else:
N_0_tmp = N_0[:, tt, k]
lambda_tmp = lambdas[:, tt, k]
mu_temp = mu[:, tt, k]
if np.all([np.all(np.isnan(x)) for x in N_0_tmp]):
continue
N_D = []
for i in range(N_0_tmp.shape[0]):
N_D.append(N_0_tmp[i] * p_diam ** mu_temp[i] * np.exp(-lambda_tmp[i] * p_diam))
N_D = np.stack(N_D, axis=0)
Calc_tmp = beta_p * N_D
tmp_od = np.trapz(alpha_p * N_D, x=p_diam, axis=1)
moment_denom = np.trapz(Calc_tmp, x=p_diam, axis=1).astype('float64')
Ze[:, k] = \
(moment_denom * instrument.wavelength ** 4) / (instrument.K_w * np.pi ** 5) * 1e-6
Calc_tmp2 = v_tmp * Calc_tmp.astype('float64')
V_d_numer = np.trapz(Calc_tmp2, x=p_diam, axis=1)
V_d[:, k] = V_d_numer / moment_denom
Calc_tmp2 = (v_tmp - np.tile(V_d[:, k], (num_diam, 1)).T) ** 2 * Calc_tmp
sigma_d_numer = np.trapz(Calc_tmp2, x=p_diam, axis=1)
sigma_d[:, k] = np.sqrt(sigma_d_numer / moment_denom)
V_d_numer_tot[:, k] += V_d_numer
moment_denom_tot[:, k] += moment_denom
hyd_ext[:, k] += tmp_od
return V_d_numer_tot, moment_denom_tot, hyd_ext, Ze, V_d, sigma_d
def _calculate_other_observables(tt, total_hydrometeor, N_0, lambdas,
num_subcolumns, beta_p, alpha_p, v_tmp, wavelength,
K_w, sub_q_array, hyd_type, p_diam, beta_pv,
rhoe, mcphys_scheme):
Dims = sub_q_array.shape
if tt % 100 == 0:
print("Processing column %d/%d" % (tt, Dims[1]))
Ze = np.zeros((num_subcolumns, Dims[2]))
Zv = np.zeros((num_subcolumns, Dims[2]))
V_d = np.zeros_like(Ze)
sigma_d = np.zeros_like(Ze)
V_d_numer_tot = np.zeros_like(Ze)
moment_denom_tot = np.zeros_like(Ze)
hyd_ext = np.zeros_like(Ze)
for k in range(Dims[2]):
if np.all(total_hydrometeor[:, tt, k] == 0):
continue
num_diam = len(p_diam)
N_D = []
for i in range(V_d.shape[0]):
N_0_tmp = N_0[i, tt, k]
lambda_tmp = lambdas[i, tt, k]
N_D.append(N_0_tmp * np.exp(-lambda_tmp * p_diam))
N_D = np.stack(N_D, axis=0)
Calc_tmp = np.tile(beta_p, (num_subcolumns, 1)) * N_D
tmp_od = np.tile(alpha_p, (num_subcolumns, 1)) * N_D
tmp_od = np.trapz(tmp_od, x=p_diam, axis=1)
tmp_od = np.where(sub_q_array[:, tt, k] == 0, 0, tmp_od)
moment_denom = np.trapz(Calc_tmp, x=p_diam, axis=1)
moment_denom = np.where(sub_q_array[:, tt, k] == 0, 0, moment_denom)
Ze[:, k] = \
(moment_denom * wavelength ** 4) / (K_w * np.pi ** 5) * 1e-6
if beta_pv is not None:
Calc_tmp = np.tile(beta_pv, (num_subcolumns, 1)) * N_D
moment_denom = np.trapz(Calc_tmp, x=p_diam, axis=1).astype('float64')
Zv[:, k] = \
(moment_denom * wavelength ** 4) / (K_w * np.pi ** 5) * 1e-6
else:
Zv[:, k] = np.nan
if rhoe is not None:
if mcphys_scheme.lower() in ["nssl"]: # NSSL parameterization for fall velocity
v_tmp = calc_velocity_nssl(rhoe[tt, k], p_diam, hyd_type)
Calc_tmp2 = Calc_tmp * v_tmp
V_d_numer = np.trapz(Calc_tmp2, axis=1, x=p_diam)
V_d_numer = np.where(sub_q_array[:, tt, k] == 0, 0, V_d_numer)
V_d[:, k] = V_d_numer / moment_denom
Calc_tmp2 = (v_tmp - np.tile(V_d[:, k], (num_diam, 1)).T) ** 2 * Calc_tmp
Calc_tmp2 = np.trapz(Calc_tmp2, axis=1, x=p_diam)
sigma_d_numer = np.where(sub_q_array[:, tt, k] == 0, 0, Calc_tmp2)
sigma_d[:, k] = np.sqrt(sigma_d_numer / moment_denom)
V_d_numer_tot[:, k] += V_d_numer
moment_denom_tot[:, k] += moment_denom
hyd_ext[:, k] += tmp_od
return V_d_numer_tot, moment_denom_tot, hyd_ext, Ze, V_d, sigma_d, Zv